A reduced fast component-by-component construction of lattice points for integration in weighted spaces with fast decreasing weights
نویسندگان
چکیده
Lattice rules and polynomial lattice rules are quadrature rules for approximating integrals over the s-dimensional unit cube. Since no explicit constructions of such quadrature methods are known for dimensions s > 2, one usually has to resort to computer search algorithms. The fast component-by-component approach is a useful algorithm for finding suitable quadrature rules. We present a modification of the fast component-by-component algorithm which yields savings of the construction cost for (polynomial) lattice rules in weighted function spaces. The idea is to reduce the size of the search space for coordinates which are associated with small weights and are therefore of less importance to the overall error compared to coordinates associated with large weights. We analyze tractability conditions of the resulting QMC rules. Numerical results demonstrate the effectiveness of our method.
منابع مشابه
Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces
We reformulate the original component-by-component algorithm for rank-1 lattices in a matrix-vector notation so as to highlight its structural properties. For function spaces similar to a weighted Korobov space, we derive a technique which has construction cost O(sn log(n)), in contrast with the original algorithm which has construction cost O(sn). Herein s is the number of dimensions and n the...
متن کاملExistence and construction of shifted lattice rules with an arbitrary number of points and bounded weighted star discrepancy for general decreasing weights
We study the problem of constructing shifted rank-1 lattice rules for the approximation of high-dimensional integrals with a low weighted star discrepancy, for classes of functions having bounded weighted variation, where the weighted variation is defined as the weighted sum of Hardy-Krause variations over all lower dimensional projections of the integrand. Under general conditions on the weigh...
متن کاملFast Construction of Good Lattice Rules
We develop a fast algorithm for the construction of good rank-1 lattice rules which are a quasi-Monte Carlo method for the approximation of multivariate integrals. A popular method to construct such rules is the component-by-component algorithm which is able to construct good lattice rules that achieve the optimal theoretical rate of convergence. The construction time of this algorithm is O(sn)...
متن کاملConstructing Embedded Lattice Rules for Multivariate Integration
Lattice rules are a family of equal-weight cubature formulas for approximating highdimensional integrals. By now it is well established that good generating vectors for lattice rules having n points can be constructed component-by-component for integrands belonging to certain weighted function spaces, and that they can achieve the optimal rate of convergence. Although the lattice rules construc...
متن کاملGood Lattice Rules in Weighted Korobov Spaces with General Weights
We study the problem of multivariate integration and the construction of good lattice rules in weighted Korobov spaces with general weights. These spaces are not necessarily tensor products of spaces of univariate functions. Sufficient conditions for tractability and strong tractability of multivariate integration in such weighted function spaces are found. These conditions are also necessary i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 276 شماره
صفحات -
تاریخ انتشار 2015